Numerical Optimization

COURSE PROGRAM

- Mathematical background:
 - normal, unitary, Hermitian, positive definite matrices;
 - matrix norm induced by vector norms;
 - set in Euclidean space: open sets, closed sets, bounded sets;
 - function of several variables: continuity, direction derivatives, differentiability, second order derivatives, Taylor's formula.
 - convex functions, convex sets and optimization problems.
- Unconstrained optimization:
 - existence results, first and second order optimality conditions;
 - steepest descend;
 - Newton method;
 - trust region.
- Constrained optimization:
 - first order optimality condition;
 - Karush-Kuhn-Tucker Theorem;
 - linear programming.

TEXTBOOK

• J. Nocedal, S. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2006.

\mathbf{EXAM}

• interview.